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Perturbation expansions for the spiked harmonic oscillator
and related series involving the gamma function
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Abstract. We study weak-coupling perturbation expansions for the ground-state energy of the
Hamiltonian with the generalized spiked harmonic oscillator potential V (x) = Bx2 + A

x2 + λ
xα

,
and also for the bottoms of the angular-momentum subspaces labelled by l = 0, 1, . . . , in N
dimensions corresponding to the spiked harmonic oscillator potential V (x) = x2 + λ

xα
, where α

is a real positive parameter. A method of Znojil (Znojil M 1993 J. Math. Phys. 34 4914) is then
applied to obtain closed-form expressions for the sums of some infinite series whose terms involve
ratios and products of gamma functions.

1. Introduction

The spiked harmonic oscillator Hamiltonian defined by

H = − d2

dx2
+ x2 +

λ

xα
α < 5

2 x ∈ [0,∞) (1.1)

where the positive parameter λmeasures the strength of the singular term, has been the subject
of intensive study [1–3]. Aguilera-Navarro and Guardiola [1], employed a resummation
technique to obtain a weak-coupling perturbation expansion for the ground-state energy
of the Hamiltonian (1.1), using standard perturbation theory up to second order. The
Hamiltonian (1.1) is first written H = H0 + λV ; then, using the odd-parity solutions of the
one-dimensional harmonic oscillator ψn(x) = |n〉 satisfying the Dirichlet boundary condition
ψ(0) = 0, and the unperturbed energies En = 3 + 4n, n = 0, 1, 2, . . . , they found that the
weak-coupling expansion for the ground state of H to the second order in V becomes

E = E0 + λ〈0|x−α|0〉 + λ2
∑
n�1

|〈0|x−α|n〉|2
E0 − En + · · · α < 5

2 (1.2)

where 〈0|x−α|n〉 is given by

〈0|x−α|n〉 = (−2)n√
(2n + 1)!

�( 3−α
2 )�(

α
2 + n)

�( 3
2 )�(

α
2 )

n = 0, 1, . . . . (1.3)

In their pertubation treatment, Aguilera-Navarro and Guardiola construct a function F ,
expressed in terms of a particular form of the Gauss hypergeometric series; the function F was
found to be useful for obtaining analytic approximations for the ground-state energy of the for
the ‘non-supersingular’ cases: α = 1

2 , α = 1 and α = 3
2 . They also provided a weak-coupling

expression valid for the case α = 2. Estévez-Bretòn et al [2] derived an exact analytical result,
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by using the function F , valid for the special case α = 2. Later Znojil [3] derived the same
result by an elegant and economical method. It is perhaps worth noting here that in all these
works, although the conclusions and the results were correct, there remained an error in the F
formula, equation (14) in [1], deduced by Aguilera-Navarro and Guardiola, which should read

F = 1

8( α2 − 1)2

[
2F1

(
α

2
− 1,

α

2
− 1; 1

2
; 1

)
− 1 − 2

(α
2

− 1
)2

]
.

In section 2 of the present paper we generalize the weak-coupling expansion (1.2) to study the
generalized spiked harmonic oscillator Hamiltonian

H ≡ H0 + λV = − d2

dx2
+ Bx2 +

A

x2
+
λ

xα
α < 5

2 x ∈ [0,∞) (1.4)

where λ and α are positive parameters. We show that the weak-coupling expansion, in this
case, is given by

E = 2
√
Bγ + B

α
4
�(γ − α

2 )

�(γ )
λ− λ2B

α−1
2 α2

16γ

�2(γ − α
2 )

�2(γ )

×4F3

(
1, 1,

α

2
+ 1,

α

2
+ 1; γ + 1, 2, 2; 1

)
+ · · ·

where γ = 1 + 1
2

√
1 + 4A. This expression is valid for all values of α < γ + 1, including

α = 2. This formula allows us to obtain perturbation expansions for (1.1) and (1.4) valid for
the bottoms of the angular-momentum subspaces labelled by l = 0, 1, . . . inN dimensions. In
section 3, we adopt the constructive approach of Aguilera-Navarro and Guardiola to generalize
the function F , which we then use to obtain a sum for the infinite series∑

n�1

( α2 )
2
n

4n(n + 1)(γ )nn!
.

In section 4, by employing Znojil’s technique [3], our generalization turns out to be useful for
obtaining closed-form sums for other interesting infinite series whose terms involve ratios and
products of gamma functions.

2. Weak-coupling expansions

Recently, we have obtained expressions [4] for the singular-potential integrals 〈m|x−α|n〉 of
the Hamiltonian (1.4) using the Gol’dman and Krivchenkov eigenfunctions [5]

ψn(x) ≡ |n〉 = Cnx 1
2 (1+

√
1+4A)e− 1

2

√
Bx2

1F1

(
−n, 1 + 1

2

√
1 + 4A;

√
Bx2

)

C2
n =

2B
1
2 + 1

4

√
1+4A�

(
n + 1 + 1

2

√
1 + 4A

)
n!

[
�

(
1 + 1

2

√
1 + 4A

)]2 n = 0, 1, 2, . . .
(2.1)

where 1F1 is the confluent hypergeometric function [9]

1F1(a, b; z) =
∑
k

(a)kz
k

(b)kk!
(a)k = a(a + 1) . . . (a + k − 1) = �(a + k)

�(a)
(2.2)

and the exact eigenenergies En = √
B(4n + 2 +

√
1 + 4A), n = 0, 1, 2, . . . , for the singular

Hamiltonian

H0 = − d2

dx2
+ Bx2 +

A

x2
B > 0 A � 0 x ∈ [0,∞). (2.3)
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Hall et al [4] found, for α < 2γ , that the matrix elements 〈m|x−α|n〉 are given by

〈m|x−α|n〉 = (−1)n+mBα/4

√
�(γ +m)

n!m!�(γ + n)

×
m∑
k=0

(−1)k
(
m

k

)
�(k + γ − α

2 )�(
α
2 − k + n)

�(k + γ )�(α2 − k) γ = 1 + 1
2

√
1 + 4A

(2.4)

in which each element has a factor which is a polynomial of degree m + n in α. The relevant
matrix elements 〈0|x−α|n〉 are given [4] by

〈0|x−α|n〉 = (−1)nBα/4
√

�(γ )

n!�(γ + n)

�(γ − α
2 )�(

α
2 + n)

�(γ )�(α2 )
n = 0, 1, 2, . . . . (2.5)

Thus, writing (1.4) as H = H0 + λV and using the standard perturbation theory to the second
order, we find that the weak-coupling expansion (1.2) now reads

E = 2
√
Bγ + B

α
4
�(γ − α

2 )

�(γ )
λ− λ2B

α−1
2
�2(γ − α

2 )

�2(γ )

∑
n�1

( α2 )
2
n

4n(γ )nn!
+ · · · α < γ + 1

(2.6)

where γ = 1 + 1
2

√
1 + 4A. We observe that the ratio of the nth and (n + 1)th terms of the sum

in the coefficient of λ2 in (2.6) is

〈0|x−α|n〉2/(En − E0)

〈0|x−α|n + 1〉2/(En+1 − E0)
= 1 +

γ + 2 − α
n

+ o

(
1

n2

)
as n→ ∞

so that, by Raabe’s test [6], this sum is convergent for α < γ + 1. The expressions (1.2)
and (2.6) are accurate for λ small compared to unity. It is interesting that the sum of the infinite
series in the λ2 coefficient can be computed exactly for arbitrary values of α and γ satisfying
α < γ + 1. We express the sum in terms of the generalized hypergeometric functions pFq
defined [7] by

pFq(α1, α2, . . . , αp;β1, β2, . . . , βq; z) =
∞∑
n=0

(α1)n(α2)n . . . (αp)n

(β1)n(β2) . . . (βq)n

zn

n!
. (2.7)

Indeed, the sum in the λ2 coefficient implies

∑
n�1

( α2 )
2
n

4n(γ )nn!
=

∑
n�1

(n− 1)!( α2 )
2
n

4(γ )n(n!)2

= 1

4

∑
n=0

(n!)2( α2 )
2
n+1

((n + 1)!)2(γ )n+1n!

= α2

16γ

∑
n=0

(1)2n(
α
2 + 1)2n

(2)2n(γ + 1)nn!

= α2

16γ
4F3

(
1, 1,

α

2
+ 1,

α

2
+ 1; γ + 1, 2, 2; 1

)
(2.8)

where we have used the Pochhammer identities (z)n+1 = z(z + 1)n and n! = (1)n. This
expression can easily be computed for arbitrary values of α < γ + 1 by the use, for example,
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of Mathematica. The weak-coupling expansion (2.6) now reads

E = 2
√
Bγ + B

α
4
�(γ − α

2 )

�(γ )
λ− λ2B

α−1
2 α2

16γ

�2(γ − α
2 )

�2(γ )

×4F3

(
1, 1,

α

2
+ 1,

α

2
+ 1; γ + 1, 2, 2; 1

)
+ · · · . (2.9)

The results of Aguilera-Navarro and Guardiola for the special case B = 1, A = 0 or γ = 3
2 ,

and for the values of α = 1
2 , α = 1, α = 3

2 and α = 2 follow immediately without the
necessity of special treatment for the case of α = 2 as suggested before by many workers in
the field [1–3]. The expression (2.9) can be further generalized to apply to the ground-state
eigenenergy at the bottom of each angular-momentum subspace labelled by l = 0, 1, 2, . . . in
N dimensions: we just need [8] to replace A with A → A + (l + 1

2 (N − 1))(l + 1
2 (N − 3)).

For the spiked harmonic oscillator potential (1.1), we set A = 0 or we replace γ with l + N
2 to

obtain a weak-coupling expansion valid for the bottoms of the angular-momentum subspaces
in N dimensions.

3. The F function

Although our results in section 2 cover all the cases for α < 5
2 for the Hamiltonians (1.1)

and (1.4) the constructive approach of Aguilera-Navarro and Guardiola allows us to obtain
more sums of infinite series involving gamma functions. We first generalize the function F as
introduced in [1] (we also point out the error in the F formula there). If we denote the sum in
the λ2 coefficient of equation (2.6) by

G =
∑
n�1

( α2 )
2
n

4n(γ )nn!
(3.1)

and compare this with the sum

F =
∑
n�1

( α2 )
2
n

4(n + 1)(γ )nn!
(3.2)

we see that G and F are related by the expression

G = F +
∑
n�1

( α2 )
2
n

4n(n + 1)(γ )nn!
. (3.3)

The new expression for the sum thus obtained will be easier to approximate since fewer
terms will be required for a given accuracy. Moreover, using the Pochhammer identity
(z)n+1 = z(z + 1)n, we note that F can be written in terms of a special form of the Gauss
hypergeometric function [9]

2F1(a, b; c; z) =
∑
n=0

(a)n(b)n

(c)n

zn

n!
(3.4)

(with a circle of convergence |z| = 1) as

F = (γ − 1)

4( α2 − 1)2

[
2F1

(α
2

− 1,
α

2
− 1; γ − 1; 1

)
− 1 − ( α2 − 1)2

(γ − 1)

]
. (3.5)

This generalizes the weak-coupling expansion derived by Aguilera-Navarro and Guardiola to
study equation (1.4) for α < γ + 1. However, we should note here the correct form of function
F of the case γ = 3

2 or A = 0, that is

F = 1

8( α2 − 1)2

[
2F1

(
α

2
− 1,

α

2
− 1; 1

2
; 1

)
− 1 − 2

(α
2

− 1
)2

]
(3.6)
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not as quoted in [1–3]. Equations (2.8) and (3.5) can be used now to obtain a sum for the
infinite series∑
n�1

( α2 )
2
n

4n(n + 1)(γ )nn!
= α2

16γ
4F3

(
1, 1,

α

2
+ 1,

α

2
+ 1; γ + 1, 2, 2; 1

)

− (γ − 1)

4( α2 − 1)2

[
2F1

(α
2

− 1,
α

2
− 1; γ − 1; 1

)
− 1 − ( α2 − 1)2

(γ − 1)

]
(3.7)

valid for α �= 2. For the special limit α = 2, the expression (3.5) has no meaning. However,
the sum in the λ2 coefficient of (2.6) converges and follows from (2.8) by setting α = 2.
Indeed, in this case, the sum in (2.6) becomes∑
n�1

(1)2n
4n(γ )nn!

=
∑
n�1

(n− 1)!

4(γ )n
=

∑
n=0

(1)2n
4(γ )n+1n!

= 1

4γ
2F1(1, 1; γ + 1; 1) (3.8)

which follows immediately from (2.8). The Gauss hypergeometric function 2F1(1, 1; γ +1; 1)
can be evaluated using the identity [9]

2F1(a, b, c; 1) = �(c)�(c − a − b)
�(c − a)�(c − b) c − a − b > 0 c > b > 0 (3.9)

to obtain ∑
n�1

(1)2n
4n(γ )nn!

= 1

4(γ − 1)
γ > 1. (3.10)

Thus, for the case α = 2, the weak-coupling expansion (2.9) becomes

E(α = 2) = 2
√
Bγ +

√
B

(γ − 1)
λ−

√
B

4(γ − 1)3
λ2 + · · · γ > 1 (3.11)

and finally, for B = 1, A = 0 or γ = 3
2 , we obtain

E(α = 2) = 3 + 2λ− 2λ2 + · · · (3.12)

as we expect.

4. More closed-form sums of infinite series

For the special limiting case α → 2, we introduce a parameter ε = α
2 − 1, which will be

chosen to approach zero. The function F , as given by (3.5), becomes in this limit

lim
ε→0

F = (γ − 1)

4
lim
ε→0

ε−2[2F1(ε, ε, γ − 1, 1)− 1] − 1

4
. (4.1)

Using the series expansion of the Gauss hypergeometric function (3.4), equation (4.1) can be
written, using �(z + 1) = z�(z), as

lim
ε→0

F = 1

4

∞∑
n=0

�(n)�(γ )

n�(n + γ − 1)
− 1

4
. (4.2)

Some results similar to equations (4.1) and (4.2), were first published, without detailed proofs,
by Mitchell [11]. Now, using the identity (3.9), equation (4.1) can be rewritten as

lim
ε→0

F = (γ − 1)

4
lim
ε→0

ε−2

[
�(γ − 1)�(γ − 1 − 2ε)

�2(γ − 1 − ε) − 1

]
− 1

4
. (4.3)
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Now employing Znojil’s method [3], we can obtain closed form sums for other infinite series
involving gamma functions. Indeed, the Maclaurin expansion of the gamma function

�(c + x) = �(c){1 + xψ(c) + 1
2 [ψ2 + ψ(1)(c)] + · · ·} (4.4)

where ψ(c) and ψ(n)(c), n � 1, are the digamma and the polygamma functions [10],
respectively. We can show, after expanding the gamma functions in (4.3) and employing
multiplication and division of polynomials, that equation (4.4) can be written as

lim
ε→0

F = (γ − 1)

4
ψ(1)(γ − 1)− 1

4
(4.5)

where ψ(n)(z) are the polygamma functions. Comparing (4.2) and (4.5), we have
∞∑
n=1

�(n)�(γ − 1)

n�(n + γ − 1)
= ψ(1)(γ − 1) γ > 1 (4.6)

whereψ(1)(z) is the trigamma function [7]. For the purpose principally of verification we now
note some special cases. For γ = 2

∞∑
n=1

1

n2
= π2

6
(4.7)

and for γ − 1 = m � 2 positive integer, we find
∞∑
n=1

�(n)�(m)

n�(n +m)
= π2

6
−

m∑
k=2

1

(k − 1)2
(4.8)

by using the recurrence relation

ψ(n)(z + 1) = ψ(n)(z) + (−1)nn!z−n−1.

Further, for γ = 3
2

∞∑
n=1

�(n)�( 1
2 )

n�(n + 1
2 )

= π2

2
(4.9)

and
∞∑
n=1

�(n)�(mz)

n�(n +mz)
= 1

m2

m−1∑
k=0

ψ(1)
(
z +

k

m

)
. (4.10)

Finally, we can now have a finite sum for the infinite series (3.7) for the case α = 2 and γ > 1,∑
n�1

(1)2n
4n(n + 1)(γ )nn!

= 1

4γ
2F1(1, 1; γ + 1; 1)− γ − 1

4
ψ(1)(γ − 1) +

1

4
. (4.11)

5. Conclusion

We have obtained a compact weak-coupling expansion (2.9) for eigenvalues of the spiked
harmonic oscillator Hamiltonian. Our expansion extends the earlier work of Aguilera-Navarro
and Guardiola for γ �= 3

2 , and it allows for arbitrary spatial dimension N and also, for N � 2,
arbitrary orbital angular-momentum $. Moreover, with the closed-form expressions we have
been able to provide for the coefficient of the λ2 term, the new expansion is easier to handle
and calculate with, even at or near to the special value α = 2. These analytic expressions
describe approximately how the eigenvalues depend on all the parameters in the Hamiltonian.
Such formulas are complementary to data obtained with the aid of a computer; moreover,
they are useful in guiding a procedure that searches for very accurate numerical eigenvalues.
As a byproduct of this work, we have been led to some simple closed forms for a variety of
interesting infinite series involving sums and ratios of gamma functions.



Perturbation expansions for the spiked harmonic oscillator 5537

Acknowledgments

Partial financial support of this work under grant no GP3438 from the Natural Sciences and
Engineering Research Council of Canada is gratefully acknowledged by one of us (RLH).
We should also like to thank Professors V C Aguilera-Navarro and G A Estévez-Bretón for
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